btfox磁力书

Udemy - Introduction to Qdrant (Vector Database) Using Python

File list

  • 2. Qdrant - Basics/1. Introduction and Installation.mp4-66.62 MB
  • 1. Introduction/3. Components of a Vector Databases.mp4-54.97 MB
  • 2. Qdrant - Basics/11. Vector similarity search in Qdrant - Part 2.mp4-46.31 MB
  • 1. Introduction/6. Vector Similarity Metrics.mp4-45.71 MB
  • 1. Introduction/4. Vector Embeddings.mp4-45.35 MB
  • 3. Qdrant - Advanced/10. Configuring Qdrant.mp4-44.38 MB
  • 4. Qdrant - Examples (Optional)/2. Qdrant + OpenAI.mp4-42.29 MB
  • 4. Qdrant - Examples (Optional)/1. Qdrant + Tensorflow.mp4-41.28 MB
  • 2. Qdrant - Basics/6. Points.mp4-40.82 MB
  • 2. Qdrant - Basics/9. Vector Similarity Search in Qdrant - Part 1.mp4-38.51 MB
  • 4. Qdrant - Examples (Optional)/3. Qdrant + LangChain.mp4-35.02 MB
  • 2. Qdrant - Basics/4. Collections.mp4-29.6 MB
  • 1. Introduction/2. Vector Databases.mp4-28.77 MB
  • 3. Qdrant - Advanced/7. Vector Quantization - Part 2.mp4-28.33 MB
  • 3. Qdrant - Advanced/5. Vector Quantization - Part 1.mp4-25.73 MB
  • 3. Qdrant - Advanced/11. Optimizers.mp4-25.72 MB
  • 3. Qdrant - Advanced/3. Vector Index.mp4-24.61 MB
  • 3. Qdrant - Advanced/1. Payload Indexes.mp4-24.29 MB
  • 1. Introduction/1. Introduction.mp4-21.75 MB
  • 3. Qdrant - Advanced/12. Qdrant - Async Python Client.mp4-21.61 MB
  • 2. Qdrant - Basics/8. Loading a Dataset into Qdrant.mp4-17.87 MB
  • 2. Qdrant - Basics/2. Qdrant Storage Model.mp4-13.99 MB
  • 5. Conclusion/1. Conclusion.mp4-12.19 MB
  • 3. Qdrant - Advanced/9. Snapshots.mp4-11.8 MB
  • 2. Qdrant - Basics/9.1 3.search.ipynb-137.07 KB
  • 2. Qdrant - Basics/6.1 2.Points.ipynb-11.4 KB
  • 4. Qdrant - Examples (Optional)/2.1 8.openai_example.ipynb-9.83 KB
  • 4. Qdrant - Examples (Optional)/1.1 7.tf_example.ipynb-8.7 KB
  • 2. Qdrant - Basics/4.1 1.collections.ipynb-5.32 KB
  • 3. Qdrant - Advanced/5.1 5.quantization.ipynb-4.67 KB
  • 4. Qdrant - Examples (Optional)/3.1 9.langchain_example.ipynb-4.65 KB
  • 3. Qdrant - Advanced/1.1 4.Indexes.ipynb-4.39 KB
  • 3. Qdrant - Advanced/9.1 6.snapshots.ipynb-3.82 KB
  • 4. Qdrant - Examples (Optional)/3.2 nobel_physics_2023.txt-2.25 KB
  • 3. Qdrant - Advanced/12.1 async_example.py-546 Bytes
  • 2. Qdrant - Basics/1.1 docker-compose.yaml-262 Bytes
  • 1. Introduction/5. Vector Embeddings.html-133 Bytes
  • 1. Introduction/7. Vector Similarity.html-133 Bytes
  • 2. Qdrant - Basics/3. Qdrant Storage Model.html-133 Bytes
  • 2. Qdrant - Basics/5. Collections.html-133 Bytes
  • 2. Qdrant - Basics/7. Points.html-133 Bytes
  • 2. Qdrant - Basics/10. Similarity Search - Part 1.html-133 Bytes
  • 2. Qdrant - Basics/12. Similarity Search - Part 2.html-133 Bytes
  • 3. Qdrant - Advanced/2. Payload Indexes.html-133 Bytes
  • 3. Qdrant - Advanced/4. Indexing the Vectors.html-133 Bytes
  • 3. Qdrant - Advanced/6. Quantization - Part 1.html-133 Bytes
  • 3. Qdrant - Advanced/8. Vector Quantization - Part 2.html-133 Bytes